A Novel Protoilludane Sesquiterpene from the Wood of Xanthoceras sorbifolia

Chao Mei MA¹*, Norio NAKAMURA², As'ari NAWAWI², Masao HATTORI ²*, Shao Qing CAI¹

¹School of Pharmaceutical Sciences, Peking University, Beijing 100083
²Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan

Abstract: A protoilludane sesquiterpene (named xanthocerapene) was isolated from the wood of *Xanthoceras sorbifolia* Bunge. Its structure, including the relative configuration was established by spectroscopic and chemical methods.

Keywords: Xanthoceras sorbifolia, Sapindaceae, sesquiterpene, protoilludane, xanthocerapene.

In the course of our searching for anti-HIV agents from natural sources, we have isolated a triterpene and a doubly linked proanthocyanidin dimer as HIV-1 protease inhibitors from the wood of *Xanthoceras sorbifolia* Bunge (Sapindaceae)¹. Further investigation of this plant has led to the isolation of a protoilludane sesquiterpene (1). The present paper describes the isolation and structural determination of this novel sesquiterpene.

The EtOH eluate of a MeOH extract of the wood of *X. sorbifolia* from a Sephadex LH-20 column was further chromatographed on a RP-2 column. The 60% MeOH eluate of the RP-2 column was repeatedly chromotographed on ODS and SiO₂ column to afford compound **1** (8 mg). The molecular weight of **1** was found to be 270 by FABMS. In the EIMS, compound **1** did not exhibit molecular ion but a fragment of that lost one molecule of H₂O. The formula of this fragment was established as $C_{15}H_{24}O_3$ from HREIMS. The molecular formula of **1** was deduced to be $C_{15}H_{26}O_4$ from the above evidence and by analyzing its ¹H-NMR where four hydroxyl signals were observed. The signals in the ¹³C-NMR spectrum of **1** could be assigned with the aid of the DEPT spectrum. Three methyls, five methylenes, three methines and four nonprotonated carbons were showed. Since **1** exhibited neither carbonyl nor olefinic carbon signals, its structure was deduced to be tricyclic.

By analyzing its ¹H-¹H COSY, HMQC and HMBC spectra, the planar structure of **1** was determined step by step as followings:

A methyl signal at δ 1.03 (s, H-12) was correlated with carbon signals at δ 53.4 (C-2, CH), 46.0 (C-6, CH), 37.7 (C-3, C) and 33.2 (C-4, CH₂) in HMBC. Because of

^{*} E-mail: mchaomei@hotmail.com; saibo421@ms.toyama-mpu.ac.jp

the singlet nature of this methyl, it must connect directly to the quaternary carbon (C-3),

Figure 1 structures of 1 and 2

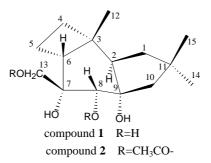


Table 1 NMR spectral data of compounds 1 and 2 (δ ppm, CDCl₃, 500 MHz)

1			2		
position	δ _H	δ_{C}	δ _H	δ_{C}	
1	β 1.41 (dd, <i>J</i> =8.5, 14.0 Hz)	41.8	β 1.45 (dd, <i>J</i> =8.5, 13.5 Hz)	42.6	
	α 1.85 (dd, J=8.5, 14.0 Hz)		α 1.80 (dd, J=8.5, 13.5 Hz)		
2	2.60 (t, J=8.5 Hz)	53.4	2.63 (t, J=8.5 Hz)	53.4	
3		37.7		37.7	
4	1.61 (br. t, J=9.0 Hz), 1.77 (overlapped)	33.2	β 1.63 (m), α 1.88 (m)	33.6	
5	β 1.86 (m), α 2.28 (m)	15.9	β 1.95 (m), α 2.23 (m)	17.1	
6	1.75 (overlapped)	46.0	2.24 (overlapped)	47.2	
7		73.2		74.0	
8	3.34 (s)	77.4	4.80 (s)	74.2	
9		84.9		84.8	
10	1.56 (d, <i>J</i> =14.5 Hz)	53.0	α 1.52 (d, <i>J</i> =14.5 Hz)	54.2	
	1.73 (d, <i>J</i> =14.5 Hz)		β 1.60 (d, <i>J</i> =14.5 Hz)		
11		37.4		36.9	
12	1.03 (s, 3H)	26.3	1.23 (s, 3H)	26.8	
13	3.33 (d, <i>J</i> =11.0 Hz)	69.1	3.74 (d, <i>J</i> =11.0 Hz)	67.8	
	3.61 (d, <i>J</i> =11.0 Hz)		3.99 (d, <i>J</i> =11.0 Hz)		
14	1.22 (s, 3H)	31.8	1.18 (s, 3H)	31.7	
15	1.05 (s, 3H)	31.2	1.03 (s, 3H)	31.3	
OH x 4	3.56 (s), 3.62 (s), 3.81 (s), 3.94 (s)		3.19 (s), 4.12 (s)		
8-Ac			2.18 (s, 3H)	21.3, 170.5	
13-Ac			2.05 (s, 3H)	21.2, 171.1	

and the other three carbons (C-2, C-6, C-4) should be next to this quaternary carbon.

Two singlet methyl groups at $\delta 1.05$ (CH₃-15) and 1.22 (CH₃-14) were found to correlate with each other, and both correlate with 37.4 (C-11, C), 53.0 (C-10, CH₂) and 41.8 (C-1, CH₂) in HMBC. These data indicated that they were two germinal methyls connected with the methylene carbons (C-10, C-1) through the quaternary carbon (C-11).

The ¹H-¹H COSY spectrum clearly indicated that a methyne group at δ 2.60 (H-2) was next to a methylene group at δ 1.41 and 1.85 (H-1), and a methylene group at δ 1.61 and 1.77 (H-4) was next to another methylene at δ 2.28 and 1.86 (H-5).

Methylene proton signals at δ 1.56 and 1.73 (H-10) were found correlated with a quaternary carbon signal at δ 84.9 (C-9), and with two tertiary carbon signals at δ 77.4 (C-8) and δ 53.4 (C-2) in HMBC. Because of the characteristic AB spinning system of

A Novel Protoilludane Sesquiterpene from the Wood of Xanthoceras sorbifolia

this methylene, it should be next to the quaternary carbon (C-9). The quite low-field chemical shift of C-9 (δ 84.9) suggested that it connected with an oxygen atom.

A methyne proton signal at δ 3.34 (H-8) was found correlated with a quaternary carbon signal at δ 73.2 (C-7) and a tertiary carbon signal at δ 46.0 (C-6) in HMBC. The singlet nature of H-8 suggested it to be next to the quaternary carbon (C-7). The low-field chemical shifts of C-8 (77.4) and C-7 suggested that they were both connected with oxygen atoms.

The methylene proton signals at δ 3.61, 3.33 (H-13) was a double-doublet which correlated with C-7 and C-8 in HMBC, so it must connect with the quaternary carbon, C-7. The low-field chemical shift (C-13, δ 69.1) suggested it was oxygenated. The correlation H-5 and C-7 in HMBC suggested that C-6 bonded with C-5. Thus, the skeleton of **1** was determined as protoilludane with 7, 8, 9 and 13 positions oxygenated.

Treatment of 1 (2 mg) with acetic anhydride in pyridine at room temperature yielded compound 2 (2 mg), the primary (OH-13) and secondary (OH-8) hydroxyl groups were acetylated and the two tertiary hydroxyls (OH-7 and 9) were unaffected.

The relative stereochemistry of **1** was determined by NOESY experiments. In the spectrum of **1**, correlations between H-12 and H-8, H-12 and H-1 at δ 1.41 were observed, therefore, these protons must locate at the same face (it was assumed to be β). One of the methyl groups on C-11 was assigned to be β -orientated (CH₃-15) since its correlation with 1 β -H. H-2 was found to have NOE correlation with CH₃-14, but not with CH₃-15, thus it was assigned to be α orientation.

In the NOESY spectrum of **2**, CH₂OAc-13 showed significant cross peak with H-8 but little cross peak with AcO-8, so it was β orientated. From HMQC of **2**, it was known that the signal of H-6 was overlapped with one of H-5 signals. The other H-5 was determined to be β orientated because it was correlated with H-12 in NOESY. Therefore, the overlapped H-5 was deduced to be α orientated. The overlapped signals of H-5 α and H-6 were found correlation not only with other α orientated protons(such as H-2) due to H-5 α , but also with β orientated protons, such as H-8, therefore, H-6 was determined to be β -orientated. Based on the above evidence, the structure of compound **1** was determined as shown in **Figure 1** and was named xanthocerapene.

Compound 1 is the first example of a protoilludane type sesquiterpene from the plant family of Sapindaceae.

Reference

1. C. M. Ma, N. Nakamura, M. Hattori, et al., J. Nat. Prod., 2000, 63, (2), 238.

Received 16 December, 2002